第 184 章 奇妙的万能公式
新的一天,阳光洒在学堂的窗棂上,戴浩文再次精神抖擞地站在讲台前,准备向学子们传授新的知识——三角函数的万能公式。
“诸位学子,今日咱们要一同探索三角函数中奇妙的万能公式。”戴浩文微笑着开场。
学子们眼中充满好奇,纷纷挺直了身子,准备聆听。
戴浩文拿起粉笔,先画了一个直角三角形,“咱们先从这个特殊的直角三角形说起,假设 t = tan(α/2),那么这个直角三角形的三边分别为斜边 1 + t2,直角边为 1 - t2和 2t 。”
接着,他在黑板上写下:“sinα = 2tan(α/2) / (1 + tan2(α/2)) ,cosα = (1 - tan2(α/2)) / (1 + tan2(α/2)) ,tanα = 2tan(α/2) / (1 - tan2(α/2)) 。”
他放下粉笔,看着学子们问道:“大家先看看这几组公式,有何想法?”
一位名叫孙宇的学子率先发言:“先生,这公式看起来甚是复杂,不知从何入手理解。”
戴浩文笑了笑说:“莫急,孙宇。咱们先从最简单的开始。大家想想,tan 函数是什么?”
另一位学子李华回答道:“先生,tan 函数是正弦与余弦的比值。”
戴浩文点头:“不错。那咱们就从这个角度来理解万能公式。咱们还是借助刚刚这个直角三角形,通过三边的关系来推导万能公式。”
他接着说道:“咱们先看 sinα 的万能公式,2tan(α/2) 就是 2t ,而 1 + tan2(α/2) 就是 1 + t2 ,通过这样的关系和化简,就能得到 sinα 。”
学子们听得入神,戴浩文继续讲解:“那再看 cosα 的万能公式,同样利用这个直角三角形三边的关系进行化简,就能得出。”